

Grayhill 3Dxx Display Products

Setup and Usage of Qt 5.9.3 Development Software Windows

Revision C

May 11, 2018 Page 2

Revision History

Revision Date Description

A
This release intentionally skipped to provide
consistent revisions with releases

B
This release intentionally skipped to provide
consistent revisions with releases

pC 02/27/2018
Initial release for Windows
Updated glibc support to include gconv_UTF and
ZH

C 04/06/2018

Document clean-up and process improvements
Updated Grayhill examples to be runnable upon
loading
Updated gcclibs_4.8.3

May 11, 2018 Page 3

Table of Contents

Revision History ...2

Table of Contents ...3

Introduction ...5

Supported Hardware Products ..6

Recommended Equipment from Grayhill ...6

Other Recommended Equipment ..7

Software Required ..7

Installation Overview ..8

Download and Install Qt Creator ...9

Download and Install Support Files .. 24

PuTTY ... 24
WinSCP ... 25

Grayhill Qt Support Files .. 26

Configuring 3Dxx Display’s IP Address ... 28

Transfer Configuration Files to Display .. 34

Execute Configuration Scripts ... 40

Selecting a 3Dxx Qt Widget Demo Project ... 44

Build and Run a 3Dxx Embedded Application (Widget) .. 45

Appendix A: Configuring a Manual Qt Kit for Grayhill Displays .. 49

Device .. 51

Compiler .. 57
Debugger ... 60
qmake .. 61
Kit .. 62

Appendix B: Configuring a 3Dxx Project ... 64

Build .. 68

Run .. 72

Quick Reference .. 77

Appendix C: Debugging ... 79

Appendix D: Build and Run 3Dxx Desktop Application .. 85

Appendix E: Build and Run QML Demonstration Program .. 88

Appendix F: Setting up a 3Dxx Qt Program to Run at Boot Up .. 89

May 11, 2018 Page 4

Appendix G: Interfacing 3Dxx Hardware from QT Software ... 90

LCD ... 90

LCD Backlight .. 90
Camera Driver Interface .. 91
CAN Driver Interface .. 95
Digital I/O Driver Interface ... 99
Analog Inputs (Model 3D70 only) .. 103

Buzzer (Models 3D70, 3D2104) ... 105
Audio Output (Model 3D70 only) ... 106

Appendix H: Setting 3Dxx Flash File System R/W Mode .. 107

Appendix I: Building Qt Library Source .. 108

Appendix J: Dynamic IP Address ... 113

Appendix K: Static IP Address .. 114

May 11, 2018 Page 5

Introduction

This document describes:

 Setup and usage of the Qt-based development environment for Grayhill 3Dxx display products

 Code development for a 3Dxx Display product in the Qt IDE

 Accessing various 3Dxx hardware features via this code

 Loading developed application code onto a 3Dxx Display product

This Qt cross-platform development environment runs under Windows 7 and Windows 10.

The different features of the Grayhill displays are described below as are differences in their installation.

This document is intended for use by software developers who are familiar with programming in C/C++

using the Qt framework. Experience developing applications for Linux platforms is a definite plus.

Screen shots were designed to be as accurate as possible and should be used for reference.

Note: Qt is licensed under the terms of LGPL and GPL; these are open-source licensing agreements.

Please reference https://www1.qt.io/qt-licensing-terms/ for a detailed explanation. Additional information

is also located at https://www.gnu.org/licenses/licenses.html.

https://www1.qt.io/qt-licensing-terms/
https://www.gnu.org/licenses/licenses.html

May 11, 2018 Page 6

Supported Hardware Products
The Qt-based development environment is supported on the following Grayhill 3Dxx Color Display

Models:

 3D50

 3D70

 3D2104

The table below summarizes the key features of each of these models. Note that the features of a specific

product may vary depending on the purchased hardware configuration.

Model Number 3D50 3D70 3D2104

Display Size (inches) 5 7 10.4

Pixel Count (w x h) 800 x 480 800 x 480 1024 x 768

Touch Screen Input Yes Yes Yes

Real Time Clock Yes Yes Yes

CAN Ports 2 2 3

Camera Inputs 2 3 4

USB ports
1 (maintenance

only)

1 (maintenance

only)

1 (maintenance

only)

RS232
1 (maintenance

only)

1 (maintenance

only)

1 (maintenance

only)

Built-in Ethernet 0 1 1

Digital Input (dedicated) 1 4 0

Digital Output

(dedicated)
1 4

0

Digital Input / Output 3 0 4

Analog Input 0 2 0

Audio Output No 1 channel No

Buzzer No Yes Yes

Recommended Equipment from Grayhill
If using Model 3D50 5 Inch Display:

 3D50DEV-100 3D50 Development Kit

If using Model 3D70 7 Inch Display:

 3D70DEV-100 3D70 Development Kit

If using Model 3D2104 10.4 Inch Display:

 3D2104DEV-100 3D2104 Development Kit

May 11, 2018 Page 7

Other Recommended Equipment
 An Ethernet port connected to a DHCP server that can be connected to the 3Dxx Display. This

port should be on the same network as the development PC.

 PC Running Windows 7/10 with the following minimum configuration:

 4 GB RAM

 10 GB available hard drive space on C:

 Ethernet port

 RS232 Port (or USB to serial adapter)

 Internet Access

Software Required
The following files are available for download from Grayhill at: http://www.grayhill.com/qt43d

 QtInstaller

 Qt Windows online installer

 QtGhSupport

 Files for building Qt applications

 Support utilities for building Qt applications

 Example projects from Grayhill

 3Dxx_Qt_Usage_Guide_Windows.pdf (this document)

May 11, 2018 Page 8

Installation Overview
This is a brief overview of the installation steps for the Qt-based development environment for a Grayhill

3Dxx Display.

 First connect the 3Dxx Development Kit hardware to the PC being used. This includes connecting

the serial port and Ethernet port interfaces. For the 3D50 Display this procedure is described in

detail in the document “3D50DEV Quick Start Guide.pdf” and for the model 3D70 Display it is

described in the document “3D70DEV Quick Start Guide.pdf”.

 Qt Creator for Windows is downloaded and installed on the development PC

 Additional third party utilities are downloaded, installed, and configured

 Grayhill support files are downloaded and installed

 The serial and Ethernet links to the target 3Dxx Display hardware are established.

 Configuration scripts are run on the target 3Dxx display board and Windows to configure the

3Dxx display to operate with Qt instead of VUI Builder
©

. The display scripts will need to be run

on each 3Dxx Display product that will be operated with Qt.

 Finally instructions are provided on how to open and run a Qt demonstration project on the 3Dxx

Display target hardware. This demonstration project illustrates:

using touch screen “buttons”

using touch screen swipes

setting the 3Dxx backlight

operating the 3Dxx camera input

accessing and setting the real time clock

For the 3D70 Display there are also samples of using the audio output, the analog input, and the

internal buzzer.

Instructions for using the desktop simulator are in Appendix D: Build and Run 3Dxx Desktop

Application.

May 11, 2018 Page 9

Download and Install Qt Creator

In this section, the Qt on-line installer will be downloaded from Grayhill and executed to download all the

necessary files from Qt. Once all the files are downloaded; Qt will be installed on the development PC.

 Using your favorite web browser, download “Qt Creator Windows Installer” from the Grayhill

website

 Open the downloads folder and double click on the file to execute the installer

 Click “Run”

May 11, 2018 Page 10

 Click Next

May 11, 2018 Page 11

 Create an account, if desired – otherwise click “Skip”

May 11, 2018 Page 12

 If an account was created click “Next” – otherwise this screen will not appear

May 11, 2018 Page 13

 Whether “Skip” or an account was created; installation continues here

 Click “Next”

May 11, 2018 Page 14

May 11, 2018 Page 15

 Click “Next”

Note: Due to the nature of Qt and the way it stores configuration information; Qt must be installed

in C:\Qt.

May 11, 2018 Page 16

 Minimize Preview (do not select anything)

May 11, 2018 Page 17

 Expand Qt Qt 5.9.3

 Select “MinGW 5.3.0 32bit”

May 11, 2018 Page 18

 Minimize Qt 5.9.3

 Expand Tools (Use the pre-selected default)

 Click Next

May 11, 2018 Page 19

 If accepting of the license agreement select “I have read…”

 Click “Next”

Note: Qt is licensed under the terms of LGPL and GPL; these are open-source licensing agreements.

Please reference https://www1.qt.io/qt-licensing-terms/ for a detailed explanation. Additional information

is also located at https://www.gnu.org/licenses/licenses.html.

https://www1.qt.io/qt-licensing-terms/
https://www.gnu.org/licenses/licenses.html

May 11, 2018 Page 20

 Click “Next”

May 11, 2018 Page 21

 Click “Install”

May 11, 2018 Page 22

May 11, 2018 Page 23

 Unselect “Launch Qt Creator”

 N.B. Qt Creator does not know the IP address of the target board at this time; the target board’s IP

address will be discovered and configured later. Any time the IP address of the display changes,

Qt Creator must be re-launched if using the /etc/hosts file for IP address resolution.

 Click “Finish”

May 11, 2018 Page 24

Download and Install Support Files

This section details the downloading and installation of necessary support files.

PuTTY

The examples shown in this document reflect the use of PuTTY. Feel free to substitute a different client.

 Navigate to https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html and download the

appropriate version

 Open the downloads folder and double click to execute the PuTTY installer

 Follow the installation instructions – connection configuration is described later on in the

document

May 11, 2018 Page 25

WinSCP

The examples shown in this document reflect the use of WinSCP. Feel free to substitute a different

utility.

 Navigate to https://winscp.net/eng/download.php and click “DOWNLOAD WINSCP...”

 Open the downloads folder and double click to execute the WinSCP installer

 Follow the installation instructions

 When installation is complete; select “Launch WinSCP” -- configuration is described later in the

document after the IP address is discovered

May 11, 2018 Page 26

Grayhill Qt Support Files

This section downloads and installs the necessary Qt support files. It also configures Qt Creator for the

3Dxx Display kit.

 Download “Qt Creator Windows Support Files” from the Grayhill website

 Open the download folder and double click on “QtGhSupport.exe”

A User Access Control window may pop-up

 Click “Yes” to allow the self-extracting zip file to proceed

 The following window appears

 Click “Yes”

May 11, 2018 Page 27

 Using Windows Explorer; navigate to “C: QtGhSupport” and verify the folder was installed

May 11, 2018 Page 28

Configuring 3Dxx Display’s IP Address
In order to complete the setup of the Qt development environment for the 3Dxx Display hardware; the IP

address assigned to the 3Dxx Display must be determined.

In order to perform these tasks, it is necessary to connect the 3Dxx Display to the same network as the

development PC.

 Connect the 3Dxx Display serial port to a serial port on the development PC

 Determine the serial port device name to use for PuTTY (serial communication between the PC

and the target). Usually, COM1 is used. (reference Device Manager Ports if not certain)

 Launch PuTTY

 The PuTTY Configuration screen appears – configure as follows:

Select the “Serial” button

Set “Serial line” to appropriate COM Port

Change the “Speed” to 115000

Enter a name in “Saved Sessions” (e.g. comPort1)

Click “Save”

N.B. If “Open” is clicked any unsaved configuration modifications are lost!

May 11, 2018 Page 29

 Click on “Data”

 Set “Auto-login username” to “root”

May 11, 2018 Page 30

 Click back on “Session”, then click “Save” again

 Lastly, click “Open” to establish a connection

May 11, 2018 Page 31

 Make sure that the 3Dxx Display is powered up and press the “Enter” key.

 A “ghiimx6 login:” prompt should appear. If the 3Dxx Display was just powered up; startup

messages may appear as well, but when they are done, pressing the “Enter” key should produce a

“ghiimx6 login:” prompt as shown.

 At the “ghiimx6 login:” prompt enter “root” (no password is required).

 Depending on the IP address type, refer to the appropriate appendix:

o Dynamic Appendix J: Dynamic IP Address

o Static Appendix K: Static IP Address

May 11, 2018 Page 32

 Open Windows Explorer window (<Window>-e)

 Navigate to C: Windows System32 drivers etc and select “hosts”

May 11, 2018 Page 33

 Right click to edit the file using your favorite flavor of editor (Screenshot illustrates Notepad++)

 After the editor is launched, Windows Explorer can be closed

 Add the IP address and “gmd” as illustrated below:

 Save the file

N.B. The editor may ask to restart in admin mode; allow it to continue as hosts is a system file

N.B. If the IP address of the display changes; hosts must be updated and Qt Creator re-launched

May 11, 2018 Page 34

Transfer Configuration Files to Display
 Return to the WinSCP window and establish a login session and connection

 Select “New Site” and configure as follows:

o File protocol SCP

o Host name gmd or <IP address>

o User name root

 Click Save and enter a name

 Click “OK”

May 11, 2018 Page 35

 Select “Grayhill Display”

 Click “Login”

 If this is the first connection to this IP address, the following will pop-up

 Click “Yes”

 In the left pane Navigate to C:\QtGhSupport\targetRootFiles

Hint: Clicking on the “C” goes directly to that directory level

May 11, 2018 Page 36

 The right pane defaults to /home on the display; the display may already have files

 In the left hand pane, select all the files (<Ctrl>-a) and drag them to the target (right hand pane)

 If some files already exist overwrite them with the new ones

 Click “Yes to All”

May 11, 2018 Page 37

 The right pane should look similar to:

May 11, 2018 Page 38

 Select “readWriteFileSystem” and “setup3Dxx” (<Ctrl> click)

 Right click Properties <F9>

May 11, 2018 Page 39

 Make them executable by selecting all the “X” boxes (several clicks may be required to cycle back

to the check mark

 Click “OK”

May 11, 2018 Page 40

Execute Configuration Scripts

 From Commands select “Open in PuTTY”

 A PuTTY session is established (via the IP address as opposed to the initial serial based session

used to derive the IP address)

May 11, 2018 Page 41

 If this is the first connection to this IP address, the following will pop-up

 Click “Yes”

May 11, 2018 Page 42

 Execute the script

o ./readWriteFileSystem

 The display will reboot, which terminates the PuTTY session

 Click “OK”

 Close the “PuTTY (inactive)” window

 Relaunch PuTTY (<Ctrl>-p)

May 11, 2018 Page 43

 Execute the setup script

o ./setup3Dxx

N.B. The display resets once finished; repeat the above clean-up steps for closing stale windows

 Restore any custom modifications. The setup script preserved original copies as follows:

/etc/profile.old

/etc/profile.local.old

May 11, 2018 Page 44

Selecting a 3Dxx Qt Widget Demo Project
Qt Widget demonstration projects are provided for each of the 3Dxx Displays. There is a file in each

demonstration program called “ghwrapper.cpp”. This file is a focal point for the demonstration program’s

operation and in the very beginning of this file are comments explaining how the demonstration program

works.

This table compares the features of the demonstration programs:

Program Name ghqtdemo gh7indemo gh10indemo

Target Display Model 3D50 Model 3D70 Model 3D2104

Orientation Portrait Landscape Landscape

Real Time Clock setting Yes Yes Yes

CAN input Yes Yes Yes

CAN output No Yes Yes

Touch Screen tap input Yes Yes Yes

Touch Screen Swipes Yes Yes Yes

Digital Inputs shown 4 4 4

Digital Outputs shown 4 4 4

Video inputs shown 2 3 3

Buzzer demo N/A Yes Yes

Audio Output demo N/A Yes N/A

Analog Input demo N/A Yes N/A

May 11, 2018 Page 45

Build and Run a 3Dxx Embedded Application (Widget)
This section details how to build and run a demo application on the 3Dxx Display.

 Launch Windows Explorer (<Windows>-e)

 Navigate to C: Qt Tools QtCreator bin qtcreator.exe

 Right click to select options like

“Pin to Taskbar”

“Send to” Desktop (create shortcut)

 Double click to launch Qt Creator

May 11, 2018 Page 46

 Click on “Open Project”

May 11, 2018 Page 47

 Navigate to the desired project (C: QtGhSupport GrayhillExamples gh7indemo)

 Select gh7indemo.pro

 Click “Open”

 If the following box appears, click “Yes”

 If the following box appears, click “OK”. Refer to Appendix B: Configuring a 3Dxx Project

before continuing. The current project configuration file is not compatible with the current

version of Qt Creator and the project’s settings need to be re-configured.

May 11, 2018 Page 48

 Select “Projects” view

 Select “Build” under “Qt-5.9.3-3Dxx”

 Click on the green arrow to run (a check to see if the executable is up to date is performed; if

compilation is necessary the output can be viewed by clicking on the “Compile Output” tab)

 Select the “Application Output” tab

 Click the red (when application is running on target) square to terminate the target session

May 11, 2018 Page 49

Appendix A: Configuring a Manual Qt Kit for Grayhill Displays

Note: This appendix is included for reference and is not a required installation step; Grayhill

automatically installs the kit configuration as part of the support file installation. A kit is a collection of

utilities (qmake, compilers, debugger, etc…) used to build a project.

 To see the list of available kits, select the “ Projects” view

The above image illustrates the presence of two kits.

Should another kit be desired; these instructions describe the procedure for installing a Qt Creator kit.

 Click on “Manage Kits” (this is the same as selecting Tools Options)

May 11, 2018 Page 50

 Select “Build & Run”

 Select the “General” tab

The “General” tab is where project wide customization is done. Review and select the desired

configuration.

May 11, 2018 Page 51

Device

The section describes how to establish an Ethernet based connection to the display.

 Select “Devices”

 Click “Add…”

May 11, 2018 Page 52

 Select “Generic Linux Device”

 Click “Start Wizard”

May 11, 2018 Page 53

 Populate the fields as illustrated above

 N.B. The IP address associated with gmd was configured in hosts

(C:\Windows\System32\drivers\etc)

 Click “Next”

May 11, 2018 Page 54

 Verify the 3Dxx Display is still powered up

 Click “Finish” – The Ethernet link to the 3Dxx Display will be tested and if successful the

following result screen appears

 Click “Close”

May 11, 2018 Page 55

 Click the upper arrow on the right side of the “Timeout:” box to increase timeout value to “20s”

May 11, 2018 Page 56

 Devices Summary

 Name name of the device

 Host name can be “alias” like gmd specified in hosts or a hard coded IP

 Timeout 20s
 Username root

N.B. Remember to “Test” to make sure connectivity has been established

May 11, 2018 Page 57

Compiler

 Select “Build & Run”

 Select “Compilers” tab

 Click “Add”; then select GCC C

May 11, 2018 Page 58

 Populate the fields as illustrated

“Name:” ARM-GCC

“Compiler path:” Click “Browse…” and navigate to the desired file

 C:\QtGhSupport\gcc-linaro-2013\bin\ arm-linux-gnueabi-gcc.exe

Click “Open”

“ABI:” Select “arm-linux-generic-elf-32bit”

 The configuration portion of the screen should look similar to:

May 11, 2018 Page 59

 Repeat the above steps for GCCC++

 Click “Apply”

May 11, 2018 Page 60

Debugger

 Select “Debuggers” tab

 Click “Add”

 Populate the fields as illustrated

“Name:” 3Dxx Target Debugger

“Path:” Click “Browse…” and navigate to the desired file

C:\QtGhSupport\debugger\arm-linux-gnueabi-gcc.exe

 Click “Open”; the configuration portion of the screen should look similar to

 Click “Apply”

May 11, 2018 Page 61

qmake

 Select the “Qt Versions” tab

 Click “Add” (Select a qmake Executable dialog box appears; still referencing the last path)

 Navigate to the provided qmake version C:\QtGhSupport\qmakeInsatll\bin\qmake.exe

 Click “Open”

 Update “Version name:” to “Qt-5.9.3-3Dxx”

May 11, 2018 Page 62

Kit

 Select the “Kits” tab

 Click “Add”

 Populate the fields as illustrated

 “Name:” Qt-5.9.3-3Dxx

“Device type:” Select “Generic Linux Device” from the pick list

N.B. Automatically updates Device

“Sysroot”: Click “Browse…” and navigate to desired path

C:\QtGhSupport\targetSysroot

Click “Select Folder”

 “Compiler: C:” Select “ARM-GCC” from the pick list

 “Compiler: C++:” Select “ARM-G++” from the pick list

“Debugger:” Select “3Dxx Target Debugger” from the pick list

“Qt version:” Select “Qt-5.9.3-3Dxx” from the pick list

N.B. The selected names match those used when creating the various kit sub-components

May 11, 2018 Page 63

 Verify contents are correct

 Click “OK”

Now that a Qt kit is configured; it is possible to develop, build, test, debug, run and enjoy Qt applications.

May 11, 2018 Page 64

Appendix B: Configuring a 3Dxx Project

Note: This appendix is included for reference and is not a required installation step; Grayhill

automatically configures the project as part of the support file installation.

This section details how to setup and configure a new project for the 3Dxx Display.

If not already running, launch Qt Creator. (See Build and Run a 3Dxx Embedded Application)

Open the gh7indemo project from “Qt Creator” main window click on “Open Project” button.

N.B. If present, a previous project can be opened by clicking on the project name listed below “Recent

Projects”.

May 11, 2018 Page 65

 An “Open File” dialog window will appear

 Navigate to the 3Dxx Demo project’s “.pro” file (and click to select)

C:\QtGhSupport\GrayhillExamples\gh7indemo\gh7indemo.pro

 Click “Open”

 If the “project.pro.user” file is missing, which is normal if the project has never been opened

before, a “Configure Project” dialog appears. If this dialog doesn’t appear, proceed to where the

“Projects” icon is selected.

 If the “Configure Project” dialog appears (remember screen shot illustrations are for reference

purposes and may not reflect current observations)

May 11, 2018 Page 66

“Desktop Qt 5.9.3 MinGW 32bit”

 Expand by clicking on “Details”

Unselect “Release”

Unselect “Profile”

“Qt-5.9.3-3Dxx”

 Expand by clicking on “Details”

Select “Qt-5.9.3-3Dxx” (this selection will select the three boxes below)

Unselect “Release”

Unselect “Profile”

 Click “Configure Project”

May 11, 2018 Page 67

 On the main “Qt Creator” window select “Projects”

 If the desired kit is not shown see Appendix A: Configuring a Manual Qt Kit for Grayhill

Displays

 N.B. Clicking “Manage Kits” is the same as selecting “Tools Options”

“Active Project” is a drop down pick list with the active project shown.

“Build & Run” lists the available kits.

N.B. The selected kit is emphasized in bold. A kit (set of utilities) is how the project will be built, e.g. the

main kit difference is the compiler as the Qt-5.9.3-3Dxx kit uses a cross compiler for the display.

N.B. Clicking on an actual kit name selects either Build or Run (depending on which one was previously

selected)

May 11, 2018 Page 68

Build

This is a target (3Dxx Display) build example walk-through; select “Build”.

 Expand the Details tab associated with qmake (under Build Steps)

 “Additional arguments” Enter “hw_present=3D70” – N.B. This is a case sensitive field.

N.B. the parameter is automatically added to the “effective qmake call” command syntax. This field is

configured based on the actual target hardware display size.

May 11, 2018 Page 69

 Expand the “Details” tab associated with “Make” under “Build Steps”

 Click on “Browse”

Navigate to C: Qt Tools mingw530_32 bin

Select mingw32-make.exe

Click “Open”

May 11, 2018 Page 70

 Expand the “Details” tab associated with “Make” under “Clean Steps”

 Copy and paste the contents of “Override make:”from “Build Steps” to “Clean Steps”

May 11, 2018 Page 71

 Expand the “Details” tab associated with “Use System Environment” under “Build Environment”

 Scroll down to “Path” and double click to edit

N.B. The entire contents are selected; press the right arrow key before typing

 Append “C:\Qt\5.9.3\mingw53_32\bin”

May 11, 2018 Page 72

Run

 Select “Run”

 Deployment

Method: Deploy to Remote Linux Host (should be defult)

Files to deploy:

 Local File Path location of the local file(s) (auto-populated)

Remote Directory location on the target (auto-populated)

N.B. The file information may not be populated until after a build is done

 Expand “ Details” for “Upload files via SFTP”

N.B. On rare occasions Qt Creator thinks the files have been deployed and will not re-send the files to the

target; disabling this functionality avoids the situation.

 Make sure neither box is selected

 Set “Working directory:” under Run to the directory associated with the “Executable on device:”

 Enter “/home/demo7in” in the box

May 11, 2018 Page 73

 Save! File Save All

 Build the image for the target

 Build Let Qt Creator decide what is out of date

 Rebuild Force Qt creator to re-compile everything

 Clean Remove all the existing artifacts generated by previous builds

May 11, 2018 Page 74

 Select Build Clean Project “gh7indemo”

The bottom ribbon of Qt Creator has various panes (views) that can be examined. Click on “4 Compile

Output). Note: image is shown post click; so the results and actions of the clean are shown.

 Click on the paintbrush icon to clear the contents

May 11, 2018 Page 75

 Next, select Build Build Project “gh7indemo”

The following illustrates the last few lines in “Compile Output”

Note: When there are errors, they are also highlighted/summarized in the “Issues” tab.

Deployment (running the compiled image on the target) can also be accomplished multiple ways

 Using the green triangle on the left hand side

May 11, 2018 Page 76

 From the Build menu

 Keyboard short-cut (see Run above - <Ctrl-r>)

Switch (by selecting) to the “Application Output” tab; this is where qDebug messages are output.

Click the red square to terminate the target session.

May 11, 2018 Page 77

Quick Reference

 Build Steps

qmake Additional arguments hw_present=<display model>

Make Override make C:\Qt\Tools\mingw530_32\bin\mingw32-make.exe

 Clean Steps

o Make Override make C:\Qt\Tools\mingw530_32\bin\mingw32-make.exe

 Build Environment

Path Append ;C:\Qt\5.9.3\mingw53_32\bin

May 11, 2018 Page 78

 Deployment

Upload files via SFTP unselect Incremental deployment

unselect Ignore missing files

 Run

Working directory /home/<path to executable image on display>

May 11, 2018 Page 79

Appendix C: Debugging
Let’s face it; code never initially does what it is supposed to do; but rather what it was told to do!

Luckily Qt Creator has a built-in debugger.

 First set a breakpoint

Load gh7indemo

Select the “Edit” view

Expand contents of gh7indemo

May 11, 2018 Page 80

 Close the current open pane (screen shot illustrates “General Messages”)

 Expand the “Sources” folder under the project file list

May 11, 2018 Page 81

 Select the desired file; under “Sources” select “lighting.cpp” by double clicking

May 11, 2018 Page 82

The file being displayed (edited) is shown in the “Open Documents” section as well as on the top of the

editor pane. Additional open files can be selected by either selecting them from “Open Documents” or

the up/down triangular arrows to the right of the file name. Also, the X to their right will close the file.

Select the line of code to set the breakpoint. N.B. The editor is not context aware; so it is possible to set a

breakpoint on a commented out line.

 Scroll down to line 98 (“void dtlighting::handleLightDimmer (int level)”)

 Left click on the mouse to the left of the line number; a red circle will appear

 Notice the scroll bar gutter indicates the relative location of the breakpoint in the file.

 Save

May 11, 2018 Page 83

 Click on the green arrow like “Run” from above; but with the homely lady bug.

N.B. This may cause the project to be re-compiled if the initial build was not configured for debug.

The code begins execution and quickly hits the breakpoint.

Note that the display has not been updated yet. The method (handleLightDimmer) is invoked during the

class creation – line 42 handleLightDimmer(5);.

Lastly, note the breakpoint is actually at line 101; the first executable statement within the

function/method.

May 11, 2018 Page 84

 The debugger pane illustrates the calling tree

 Clicking on line 2 jumps to the aforementioned caller

 Debugger stepping option menu

The debugger features the usual (Mouse over the icons for a description)

o Step Over <F10>

o Step In <F11>

o Step Out <Shift> + <F11>

May 11, 2018 Page 85

Appendix D: Build and Run 3Dxx Desktop Application

 Select “Projects”

 Select “Build” under “Desktop Qt 5.9.3 MinGw 32bit”

The following steps facilitate the copying of the necessary image files into the desktop simulation folder.

 Click “Add Build Step” “Custom Process Step”

May 11, 2018 Page 86

 Command C:\QtGhSupport\GrayhillExamples\copyImages.bat

 Arguments <project> e.g. gh7indemo

 File Save All

May 11, 2018 Page 87

 Select “Rebuild Project “gh7indemo” from the “Build” menu

N.B. It may take a few seconds to refresh the menu options.

Click on the “Compile Output” and “Issues” selectors on the bottom of the Qt Creator window to

check for error messages and problems.

The desktop version can now be run by clicking on the big green “Run” arrow on the lower left corner

of the Qt Creator window.

Click on the “Application Output” item on the bottom row to view application output.

Click on red square on “Application Output” window to stop application.

May 11, 2018 Page 88

Appendix E: Build and Run QML Demonstration Program
The following steps illustrate how to build and run the QML demonstration program “Samegame”.

 From Qt Creator open the “samegame” project. (Select “Welcome” to go to home screen)

 Select desired kit

 Update “Additional arguments”: under “Build Steps” “Details” to reflect the proper hardware

 Select “Build->Rebuild All” to build program

 Click on the green arrow “Run” button to run program

May 11, 2018 Page 89

Appendix F: Setting up a 3Dxx Qt Program to Run at Boot Up
This section describes how to configure a program to automatically execute at boot up.

 Open a terminal window on the target (Error! Reference source not found. describes how to

launch “PuTTY”)

 Create a launch script for the desired application Explanation

o cd /etc/init.d set into proper directory

o echo “#! /bin/sh –l treat as login (runs profile)

o cd /home/demo7in set directory for images

o /home/demo7in/gh7indemo &” > launchQtApp spawn application process

o cat launchQtApp verify contents

o chmod 755 launchQtApp make script executable

 Create a link to the launch script created above

o cd /etc/rc.d set into proper directory

o ln –s /etc/init.d/launchQtApp S12qtApp create soft link to executable file

o ls –l S12qtApp verify link creation

Note: Do not try to launch multiple Qt applications at boot up or try to launch the ghvehicleapp

application along with a Qt application as they will conflict with one another.

May 11, 2018 Page 90

Note: When switching from running one application to another, even between Qt applications, it is a good

idea to do a reboot of the 3Dxx Display in between to make sure that the hardware is properly reset. This

can be done by entering the “reboot” command on the 3Dxx Display Linux console.

Appendix G: Interfacing 3Dxx Hardware from QT Software

The 3Dxx Display contains the following custom component interfaces:

 LCD

 LCD Backlight

 Camera driver

 CAN driver

 Digital I/O driver

 Analog Input driver (Model 3D70 only)

 Buzzer (Models 3D70, 3D2104)

 Audio Output (Model 3D70 only)

This section explains how to access the functionality of these components. The programming interfaces

and provided API functions are covered, with the syntax and parameters defined. Sample code is also

provided where appropriate.

LCD

The Grayhill 3Dxx Series Display uses a 16 bit per pixel LCD screen. The pixel dimensions of various

3Dxx Display products are shown in the section Supported Hardware Products. The default orientation of the

frame buffer is landscape mode (wider pixel dimension is in horizontal direction).

LCD Backlight

The LCD Backlight setting is a value between 0 (minimum) and 100 (maximum) inclusive.

The brightness value can be set in the file /sys/class/backlight/pwm-backlight.0/brightness

Sample Code:

int value = 80;

QFile file("/sys/class/backlight/pwm-backlight.0/brightness");

if (file.open(QIODevice::WriteOnly | QIODevice::Text))

{

 QTextStream out(&file);

 out << value;

 file.close();

}

May 11, 2018 Page 91

Camera Driver Interface

The Grayhill 3Dxx Display device can contain multiple camera inputs. NTSC and PAL format video

inputs are supported by modifying the camera input sensor parameters. The camera output can be

displayed on the LCD. The following camera display parameters can be modified:

 Window parameters – window size and window position

 Color parameters – brightness, contrast, saturation and hue

 Rotation

 Input sensor parameters – provides support for NTSC and PAL formats

 Camera output to LCD foreground or background with color key

Camera output is displayed at 30fps.

Note: Only one camera input can be active at a time.

Interface:

The Qt application can interface with the Camera driver using the Camera class.

Data Types:

typedef struct _SENSORPARAMS // Must be set according to camera input

type

{ // NTSC PAL

 unsigned int top; // 4 5

 unsigned int left; // 0 4

 unsigned int height; // 480 567

 unsigned int width; // 640 640

} SENSORPARAMS, *PSENSORPARAMS;

#define FOREGROUND (1)

#define BACKGROUND (0)

// These are the only allowed values for VIDEO_COLOR_KEY_xxx:

#define VIDEO_COLOR_KEY_BLACK (0x00000000)

#define VIDEO_COLOR_KEY_RED (0x00FF0000)

#define VIDEO_COLOR_KEY_GREEN (0x0000FF00)

#define VIDEO_COLOR_KEY_BLUE (0x000000FF)

#define VIDEO_COLOR_KEY_YELLOW (0x00FFFF00)

#define VIDEO_COLOR_KEY_CYAN (0x0000FFFF)

#define VIDEO_COLOR_KEY_MAGENTA (0x00FF00FF)

#define VIDEO_COLOR_KEY_WHITE (0x00FFFFFF)

typedef struct _DISPLAYPARAMS

{

 unsigned int top; // top left window y-coordinate

 unsigned int left; // top left window x-coordinate

 // (must be divisible by 4)

May 11, 2018 Page 92

 unsigned int height; // window vertical size

 unsigned int width; // window horizontal size

 // NOTE: top + height must not exceed height of

display

 // and left + width must not exceed display width

 unsigned int rotate; // 0-7, see below

 unsigned int fg; // FOREGROUND or BACKGROUND +

VIDEO_COLOR_KEY_xxx

} DISPLAYPARAMS, *PDISPLAYPARAMS;

The camera output always operates in native landscape mode. Use the following rotation values to support

other display and camera orientations:

Value Rotation

0 No rotation

1 Vertical flip

2 Horizontal flip

3 180

4 90 right

5 90 right with vertical flip

6 90 right with horizontal flip

7 90 left

#define HUE_CODE_00 (0x00)

#define HUE_CODE_7F (0x7F)

#define HUE_CODE_80 (0x80)

typedef struct _COLORPARAMS

{

 unsigned int brightness; // 0-255

 unsigned int saturation; // 0-255

 unsigned int hue; // HUE_CODE_00, HUE_CODE_7F, or

HUE_CODE_80

 unsigned int contrast; // 0-255

} COLORPARAMS, *PCOLORPARAMS;

Function Prototypes:

Camera::Camera

Camera class constructor

Syntax

Camera:: Camera (int camnum, int fbdev = FB_DEV_0);

May 11, 2018 Page 93

Parameters

int camnum

 [in]

 Camera Number. Valid range 1-2 for Model 3D50, 1-3 for Model 3D70, 1-4 for Model 3D2104

#define FB_DEV_0 (0) // GRAPHICS being sent to /dev/fb0

#define FB_DEV_1 (1) // GRAPHICS being sent to /dev/fb1

int fbdev

 [in]

 The "fbdev" value must indicate whether the GRAPHICS are being sent to

fb0 or fb1. When GRAPHICS are being sent to fb0, then video will be sent to

fb1 and only foreground mode is allowed. This is the default assumed if

"fbdev" is missing.

If GRAPHICS are being sent to fb1, then video will be sent to fb0 and both

foreground and background modes are supported. In order to send GRAPHICS to

fb1, add this parameter to the command line that launches Qt: -display LinuxFb:/dev/fb1

Return Value

none

Camera::setdisplayparams

Sets the following display window parameters

 origin

 window size

 rotation

 foreground or background with color key (When using background mode the camera video only

shows through where the graphics data is set to the color that matches the specified color key.

Graphics of any other color will appear on top of the camera video image.)

Syntax

int Camera::setdisplayparams(PDISPLAYPARAMS p);

Parameters

PDISPLAYPARAMS p

 [in]

 refer to DISPLAYPARAMS structure

Return Value

int

0 indicates success, -1 indicates failure

Camera::setcolorparams

Sets the following camera color parameters

 Brightness

May 11, 2018 Page 94

 Saturation

 Contrast

 Hue

Syntax

int Camera::setcolorparams(PCOLORPARAMS p);

Parameters

PCOLORPARAMS p

 [in]

 refer to COLORPARAMS structure

Return Value

int

0 indicates success, -1 indicates failure

Camera::setsensorparams

Sets the camera sensor parameters

Syntax

int Camera::setsensorparams(PSENSORPARAMS psensor);

Parameters

PSENSORPARAMS psensor

 [in]

 refer to SENSORPARAMS structure

Return Value

int

always returns 0

Camera::show

Enables or disables the camera

Syntax

int Camera::show(int enable);

Parameters

int enable

 [in]

 1 = enable, 0 = disable

Return Value

int

0 indicates success, -1 indicates failure

May 11, 2018 Page 95

Required Files:

Header File: camera.h

Link Library : libghdrv.so

Sample Code:

#include “camera.h”

COLORPARAMS color;

DISPLAYPARAMS disp;

int cameranum = 1; // camera input 1

Camera cam(cameranum);

disp.top = 0;

disp.left = 80;

disp.height = 480;

disp.width = 640;

disp.rotate = 4; // rotate 90 degree right

disp.fg = FOREGROUND;

// configure display parameters

cam.setdisplayparams(&disp);

// start camera

cam.show(1);

// change color parameters

color.brightness = 50;

color.saturation = 128;

color.contrast = 128;

color.hue = 0;

// configure color parameters

cam.setcolorparams(&color);

....

// stop l+camera

cam.show(0);

CAN Driver Interface

The 3D50 and 3D70 Displays includes two CAN controller modules. Available CAN ports are CAN1

and CAN2. The 3D2104 Display includes three CAN controller modules. Available CAN ports are

CAN1, CAN2, and CAN3. The CAN controller supports both standard and extended frames.

May 11, 2018 Page 96

Interface:

The Qt demo application can interface with the CAN bus driver using the CAN class.

Data Types:

/* special flag bits for the CAN_ID */

#define CAN_EFF_FLAG 0x80000000U /* EFF flag (add to ID to activate 29-bit ID) */

#define CAN_RTR_FLAG 0x40000000U /* remote transmission request */

#define CAN_ERR_FLAG 0x20000000U /* error frame */

struct _CANMSG

{

unsigned int ID;

unsigned int Length; // Data Length Code of the Msg (0..8)

unsigned char Data[8];

};

typedef struct _CANMSG CANMSG, *PCANMSG;

Function Prototypes:

CAN::CAN

CAN class constructor

Syntax

CAN::CAN(int num);

Parameters

int num

 [in]

 CAN Port Number. Valid range 1-2 for Models 3D50, 3D70; 1-3 for Model 3D2104

Return Value

none

CAN::OpenPort

Opens the CAN socket

Syntax

int CAN::OpenPort(void);

Parameters

none

Return Value

May 11, 2018 Page 97

int

non-zero value indicates success, -1 indicates failure

CAN::WritePort

Writes a single CAN frame to the CAN port.

Syntax

int CAN::WritePort(PCANMSG TxMsg);

Parameters

PCANMSG TxMsg

 [in]

 Contains the CAN frame to be written

Return Value

int

0 indicates success, -1 indicates failure

CAN::ReadPort

Attempts to read a single CAN frame from the CAN port. Note that the CAN socket is configured to be

non-blocking, so calls to ReadPort will return even if there is no data.

Syntax

int CAN::ReadPort(PCANMSG RxMsg);

Parameters

PCANMSG RxMsg

 [out]

 Contains the CAN frame received

Return Value

int

contains the number of bytes read, -1 indicates failure

CAN::ClosePort

Closes the CAN socket

Syntax

void CAN::ClosePort(void);

Parameters

none

Return Value

none

May 11, 2018 Page 98

Required Files:

Header File: can.h

Link Library : libghdrv.so

Sample Code:

#include “can.h”

CANMSG TxMsg;

CANMSG RxMsg;

int bytesread = 0;

int cannum = 1; // CAN1

/* Init TX and RX message */

TxMsg.ID = 0x23;

TxMsg.Length = 8;

for (int i=0; i<8; i++)

 TxMsg.Data[i] = (0x11 * (i+1)); // fill random data

memset((void *)&RxMsg, 0, sizeof(CANMSG));

// CAN1

CAN can(cannum);

can.OpenPort();

can.WritePort(&TxMsg);

do

{

 bytesread = can.ReadPort(&RxMsg);

 // add delay

} while (bytesread != sizeof(CANMSG));

can.ClosePort();

May 11, 2018 Page 99

Digital I/O Driver Interface

The Model 3D50 Display, Model 3D70 Display, and Model 3D2104 Display each have four digital inputs

and four digital outputs, but they are configured differently and these differences will be explained. Each

device uses the same library calls to read the digital inputs and set the digital outputs.

On the 3D50 Five Inch Display Pin 4 on its connector is a dedicated input only pin. Pin 5 is a dedicated

output only pin. Pins 6, 7, and 8 are shared I/O pins that can be used to output a signal or input a signal.

On the Model 3D70 Seven Inch Display each of the four inputs are dedicated and so operate

independently of any output pins.

On the Model 3D2104 10.4 Inch Display all digital output pins are shared I/O pins that can be used to

output a signal or input a signal.

For a shared I/O pin to function as an input, the corresponding output must be set low.

The following table summarizes all of the digital I/O pins for each model:

Model 3D50 Pins Model 3D70 Pins Model 3D2104 Pins

Input 1 (Pin 4) Input 1 (Pin 4 Connector A) Input 1 or Output 1 (Pin 10)

Input 2 or Output 2 (Pin 6) Input 2 (Pin 8 Connector B) Input 2 or Output 2 (Pin 21)

Input 3 or Output 3 (Pin 7) Input 3 (Pin 9 Connector B) Input 3 or Output 3 (Pin 32)

Input 4 or Output 4 (Pin 8) Input 4 (Pin 10 Connector B) Input 4 or Output 4 (Pin 9)

Output 1 (Pin 5) Output 1 (Pin11 Connector B)

 Output 2 (Pin12 Connector B)

 Output 3 (Pin13 Connector B)

 Output 4 (Pin14 Connector B)

Interface:

A Qt application may set or get the digital I/O pin states by calling the appropriate C library function as

described below.

#define GHIOLIB_CH1 (0x01)

#define GHIOLIB_CH2 (0x02)

#define GHIOLIB_CH3 (0x03)

#define GHIOLIB_CH4 (0x04)

#define GHIOLIB_MAX_DIGITAL_IO (4)

#define GHIOLIB_DIG_IN_FLOAT (0)

#define GHIOLIB_DIG_IN_PULL_DN (1)

#define GHIOLIB_DIG_IN_PULL_UP (2)

#define GHIOLIB_RET_OK 0

#define GHIOLIB_RET_ERROR 1

#define GHIOLIB_RET_NOTSUPPORTED 2

ghiolib_setDigIncfg (Model 3D70 only)

May 11, 2018 Page 100

Sets input pin pull-up/pull-down configuration.

Syntax

int ghiolib_setDigIncfg(int ch, uint8_t config);

Parameters

int ch

 [in]

 Input pin to configure (GHIOLIB_CH1, GHIOLIB_CH2, GHIOLIB_CH3, or GHIOLIB_CH4)

uint8_t config

[in]
 GHIOLIB_DIG_IN_FLOAT, GHIOLIB_DIG_IN_PULL_DN, or GHIOLIB_DIG_IN_PULL_UP

Return Value

int
GHIOLIB_RET_OK, GHIOLIB_RET_ERROR, or GHIOLIB_RET_NOTSUPPORTED

ghiolib_getDigIn

This function reads the state of an input pin.

Syntax

int ghiolib_getDigIn(int ch, uint8_t *value);

Parameters

int ch

 [in]

 Input pin to read (GHIOLIB_CH1, GHIOLIB_CH2, GHIOLIB_CH3, or GHIOLIB_CH4)

uint8_t *value

[out]

 Returns 0 if input is low, else returns 1

Return Value

int
GHIOLIB_RET_OK, GHIOLIB_RET_ERROR, or GHIOLIB_RET_NOTSUPPORTED

ghiolib_getDigOut

Reads the current state of an output pin.

Syntax

int ghiolib_getDigOut(int ch, uint8_t *value);

Parameters

int ch

 [in]

 Output pin to read (GHIOLIB_CH1, GHIOLIB_CH2, GHIOLIB_CH3, or GHIOLIB_CH4)

uint8_t *value

[out]

May 11, 2018 Page 101

 Returns 0 if output is set low, else returns 1

Return Value

int
GHIOLIB_RET_OK, GHIOLIB_RET_ERROR, or GHIOLIB_RET_NOTSUPPORTED

ghiolib_setDigOut

This function sets the current state of an output pin.

Syntax

int ghiolib_setDigOut(int ch, uint8_t value);

Parameters

int ch

 [in]

 Output pin to set (GHIOLIB_CH1, GHIOLIB_CH2, GHIOLIB_CH3, or GHIOLIB_CH4)

uint8_t value

[in]

 If 0 sets output pin low, else sets output pin high (Vbatt)

Return Value

int
GHIOLIB_RET_OK, GHIOLIB_RET_ERROR, or GHIOLIB_RET_NOTSUPPORTED

Required Files:

Header File: ghiolib.h

Link Library: libghiodrv.so

Sample Qt Code:

#include <QDebug>

// For access to ghiolib

typedef u_int16_t uint16_t;

typedef u_int8_t uint8_t;

#ifdef __cplusplus

extern "C" {

#endif

#include "ghiolib.h"

#ifdef __cplusplus

}

#endif
int channel;

uint8_t digValue;

int gpioOutput;

May 11, 2018 Page 102

int gpioInput;

int gpioStatus;

// Set inputs to pull down mode and read current inputs and outputs for each channel

gpioOutput = 0;

gpioInput = 0;

for (channel = 0; channel < GHIOLIB_MAX_DIGITAL_IO; channel++)

{

 // Set input to pull down mode

 gpioStatus = ghiolib_setDigIncfg(channel + 1, GHIOLIB_DIG_IN_PULL_DN);

 if ((GHIOLIB_RET_OK != gpioStatus) && (GHIOLIB_RET_NOTSUPPORTED != gpioStatus))

 {

 qDebug("ERROR (%d) doing ghiolib_setDigIncfg on channel: %d\n",

 gpioStatus, channel + 1);

 }

 // Read current output setting

 digValue = 0;

 gpioStatus = ghiolib_getDigOut(channel + 1, &digValue);

 if (GHIOLIB_RET_OK != gpioStatus)

 {

 qDebug("ERROR (%d) doing ghiolib_getDigOut on channel: %d\n",

 gpioStatus, channel + 1);

 }

 else

 {

 if (1 == digValue)

 {

 gpioOutput |= (1 << channel);

 }

 }

 // Read current input

 digValue = 0;

 gpioStatus = ghiolib_getDigIn(channel + 1, &digValue);

 if (GHIOLIB_RET_OK != gpioStatus)

 {

 qDebug("ERROR (%d) doing ghiolib_getDigIn on channel: %d\n",

 gpioStatus, channel + 1);

 }

 else

 {

 if (1 == digValue)

 {

 gpioInput |= (1 << channel);

 }

 }

}

qDebug("GPIO initial output: 0x%x input: 0x%x\n", gpioOutput, gpioInput);

May 11, 2018 Page 103

Analog Inputs (Model 3D70 only)

The Model 3D70 Display has two analog inputs. Analog Input 1 is connected to Pin 4 on Connector B and

Analog Input 2 is connected to Pin 5 on Connector B. The Analog Inputs can be used to read resistance, voltage,

or current with respect to the analog return pin (pin 7 on Connector B).

Interface:

A Qt application may configure or read an analog input pin by calling the appropriate C library function

as described below.

#define GHIOLIB_CH1 (0x01)

#define GHIOLIB_CH2 (0x02)

#define GHIOLIB_MAX_ANALOG_IN (2)

#define GHIOLIB_ANALOG_5V (0)

#define GHIOLIB_ANALOG_1500OHM (1)

#define GHIOLIB_ANALOG_10V (2)

#define GHIOLIB_ANALOG_5000OHM (3)

#define GHIOLIB_ANALOG_20MA (4)

#define GHIOLIB_RET_OK 0

#define GHIOLIB_RET_ERROR 1

#define GHIOLIB_RET_NOTSUPPORTED 2

typedef struct _ADCVALUES

{

 uint16_t adcch;

 uint16_t adcvref;

 uint16_t adcstatus;

 uint16_t adcconfig;

} ADCVALUES, *PADCVALUES;

ghiolib_setADCcfg (Model 3D70 only)

This function configures an analog input for one of five different reading modes.

Syntax

int ghiolib_setADCcfg(int ch, uint8_t config);

Parameters

int ch

 [in]

 Input to configure (GHIOLIB_CH1 or GHIOLIB_CH2)

uint8_t config

[in]
GHIOLIB_ANALOG_5V, GHIOLIB_ANALOG_10V, GHIOLIB_ANALOG_1500OHM,

GHIOLIB_ANALOG_5000OHM, or GHIOLIB_ANALOG_20MA

Return Value

int
GHIOLIB_RET_OK, GHIOLIB_RET_ERROR, or GHIOLIB_RET_NOTSUPPORTED

May 11, 2018 Page 104

ghiolib_getADCIn (Model 3D70 only)

This function gets a reading from an analog input pin.

Syntax

int ghiolib_getADCin(int ch, PADCVALUES p);

Parameters

int ch

 [in]

 Input to read (GHIOLIB_CH1 or GHIOLIB_CH2)
PADCVALUES p

[out]

 Reading is returned in member “adcch” of this structure. Other items in this structure can be

ignored.

Return Value

int
GHIOLIB_RET_OK, GHIOLIB_RET_ERROR, or GHIOLIB_RET_NOTSUPPORTED

Required Files:

Header File: ghiolib.h

Link Library: libghiodrv.so

Sample Qt Code:

#include <QDebug>

// For access to ghiolib

typedef u_int16_t uint16_t;

typedef u_int8_t uint8_t;

#ifdef __cplusplus

extern "C" {

#endif

#include "ghiolib.h"

#ifdef __cplusplus

}

#endif

int channel = 0;

ADCVALUES analogData;

int gpioStatus;

// Set analog input 1 to read 0 to 10 volts

gpioStatus = ghiolib_setADCcfg(channel + 1, GHIOLIB_ANALOG_10V);

May 11, 2018 Page 105

if (GHIOLIB_RET_OK != gpioStatus)

{

 qDebug("ERROR (%d) doing ghiolib_setADCcfg on channel: %d\n",

 gpioStatus, channel + 1);

}

// Get current reading

gpioStatus = ghiolib_getADCin(channel + 1, &analogData);

if (GHIOLIB_RET_OK != gpioStatus)

{

 qDebug("ERROR (%d) doing ghiolib_getDigOut on channel: %d\n",

 gpioStatus, channel + 1);

}

qDebug("Reading from channel %d is %d millivolts\n", channel + 1, analogData.adcch);

Buzzer (Models 3D70, 3D2104)

The Model 3D70 and 3D2104 Displays have an internal buzzer that can be sounded on command.

Interface:

A Qt application can turn the internal buzzer on or off by sending the proper number to the buzzer control

file.

Required Files:

Header File: none

Link Library: none

Sample Qt Code:

#include <QString>

#include <QDebug>

QFile buzzerFile;

bool buzzerFileOpen;

buzzerFile.setFileName("/sys/class/backlight/pwm-

backlight.3/brightness");

buzzerFileOpen = buzzerFile.open(QIODevice::WriteOnly |

QIODevice::Text);

if (false == buzzerFileOpen)

{
 qDebug("Error opening buzzer file\n”);

}

// To turn buzzer ON

if (true == buzzerFileOpen)
{

 QTextStream buzzerOut(&buzzerFile);

May 11, 2018 Page 106

 buzzerOut << 10;

}

// . . .

// To turn buzzer OFF

if (true == buzzerFileOpen)
{

 QTextStream buzzerOut(&buzzerFile);
 buzzerOut << 0;

}

Audio Output (Model 3D70 only)

The Model 3D70 Display has the ability to play an mp3 audio file and send the audio output to a

monaural line out (pins 1, AUDIO OUT, and 2, AUDIO RET, on the B connector).

Interface:

A Qt application can start playing an mp3 audio file and can stop the playing of the audio file using a

Linux utility called mpg123.

Required Files:

Header File: none

Link Library: none

Executable: mpg123 (normally installed on Model 3D70 Display)

Sample Qt Code:

// To play mp3 file “sounds.mp3”

// Note that by placing mp3 file in “images” folder, Qt will automatically

// download the mp3 file to the target with the other image files being used.

// Command shown to play mp3 file will first stop playing any mp3 file

// that may already be playing.

system("test `pidof mpg123` && kill `pidof mpg123` ;"

 "mpg123 -q images/sounds.mp3 &");

// To stop playing mp3 file (if any)

system("test `pidof mpg123` && kill `pidof mpg123`");

May 11, 2018 Page 107

Appendix H: Setting 3Dxx Flash File System R/W Mode
 To immediately set the 3Dxx Display file system to read-write mode enter this console command:

o mount –o remount,rw /

 The above command only remains in effect until the next reboot and is usually stored in a script

file here: /home/writeablefs.

 To have the 3Dxx Display file system set to read-write mode on boot-up, edit the file /etc/init.d/rc-

once and add the above command to the end of this file just before the final “exit” command like

this:
…

…

…

case "$1" in

 start)

 do_start >&2

 ;;

 *)

 echo "Usage: $0 {start}" >&2

 exit 1

 ;;

esac

mount -o remount,rw /

exit 0

 To leave the 3Dxx Display file system set to read-only mode on boot-up, edit the file /etc/init.d/rc-

once and remove the “mount –o remout,rw /” line near the end of the file (or comment it out by

putting a “#” in column one of that line)

 Another way to have the 3Dxx Display file system set to read-write mode on boot-up, is to add a

link to the “writeablefs” script in the home directory like this:

o ln –s /home/writeablefs /etc/rc.d/S03writeablefs

The 3Dxx configuration script utilizes this technique to configure the 3Dxx Display file system to be in

read-write mode to make Qt development more convenient.

May 11, 2018 Page 108

Appendix I: Building Qt Library Source

Note: This appendix is included for reference and is not a required step.

This section describes the procedure to download and build the Qt 5.9.3 library code. The library source

code can be downloaded from Grayhill at: http://www.grayhill.com/qt43d.

Please reference http://doc.qt.io/qt-5/windows-requirements.html for additional information.

This procedure relies on both Qt Creator and the Grayhill support files having been previously

downloaded and installed.

 Download “Qt 5.9.3 Library Source” from the Grayhill website

 Open the download folder and double click on “QtLibrarySrc.exe”

A User Access Control window may pop-up

 Click “Yes” to allow the self-extracting zip file to proceed

 The following window appears

 Click “Yes”

http://doc.qt.io/qt-5/windows-requirements.html

May 11, 2018 Page 109

 Using Windows Explorer; navigate to “C: Qt\QtLibrary\Src” and verify the folder was installed

 Double click on “termWithPath.bat” – this launches a cmd window with the properly configured

path

May 11, 2018 Page 110

 mkdir build

 cd build

 mkLibs

 The window title bar updates as the build progresses

May 11, 2018 Page 111

May 11, 2018 Page 112

 Log files and a configuration summary are also created

May 11, 2018 Page 113

Appendix J: Dynamic IP Address

 Enter this command to find the 3Dxx Display Ethernet IP address:

o ifconfig eth0

The IP address of the 3Dxx Display is displayed after the tag “inet addr:” and is circled in

red in the example output shown below.

 If the tag “inet addr:” is not present; enter these commands and try the “ifconfig eth0”

command again

o ifdown eth0

o ifup eth0

 In this example the IP address is 192.168.40.118

Make a note of this IP address

Return

May 11, 2018 Page 114

Appendix K: Static IP Address

If using a static IP address for the display, once the address is determined:

 cp /etc/network/interfaces /etc/network/interfaces.bak

 vi /etc/network/interfaces

 replace

iface eth0 inet dhcp

udhcpc_opts -t 5 -T 3 -A 20 -S &

 with

iface eth0 inet static

 address 192.168.40.118

 netmask 255.255.255.0

 Google “linux interface file” for additional information.

Return

	Revision History
	Table of Contents
	Introduction
	Supported Hardware Products
	Recommended Equipment from Grayhill
	Other Recommended Equipment
	Software Required
	Installation Overview
	Download and Install Qt Creator
	Download and Install Support Files
	PuTTY
	WinSCP
	Grayhill Qt Support Files

	Configuring 3Dxx Display’s IP Address
	Transfer Configuration Files to Display
	Execute Configuration Scripts

	Selecting a 3Dxx Qt Widget Demo Project
	Build and Run a 3Dxx Embedded Application (Widget)
	Appendix A: Configuring a Manual Qt Kit for Grayhill Displays
	Device
	Compiler
	Debugger
	qmake
	Kit

	Appendix B: Configuring a 3Dxx Project
	Build
	Run
	Quick Reference

	Appendix C: Debugging
	Appendix D: Build and Run 3Dxx Desktop Application
	Appendix E: Build and Run QML Demonstration Program
	Appendix F: Setting up a 3Dxx Qt Program to Run at Boot Up
	Appendix G: Interfacing 3Dxx Hardware from QT Software
	LCD
	LCD Backlight
	Sample Code:

	Camera Driver Interface
	Interface:
	The Qt application can interface with the Camera driver using the Camera class.
	Data Types:
	Function Prototypes:
	Camera::Camera
	Required Files:
	Sample Code:

	CAN Driver Interface
	Interface:
	Data Types:
	Function Prototypes:
	Required Files:
	Sample Code:

	Digital I/O Driver Interface
	Interface:
	Required Files:
	Sample Qt Code:

	Analog Inputs (Model 3D70 only)
	Interface:
	Required Files:
	Sample Qt Code:

	Buzzer (Models 3D70, 3D2104)
	Interface:
	Required Files:
	Sample Qt Code:

	Audio Output (Model 3D70 only)
	Interface:
	Required Files:
	Sample Qt Code:

	Appendix H: Setting 3Dxx Flash File System R/W Mode
	Appendix I: Building Qt Library Source
	Appendix J: Dynamic IP Address
	Appendix K: Static IP Address

